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Abstract

A search for new physics is performed based on all-hadronic events with large miss-
ing transverse momentum produced in proton-proton collisions at

√
s = 13 TeV. The

data sample, corresponding to an integrated luminosity of 2.3 fb−1, was collected with
the CMS detector at the CERN LHC in 2015. The data are examined in search regions
of jet multiplicity, tagged bottom quark jet multiplicity, missing transverse momen-
tum, and the scalar sum of jet transverse momenta. The observed numbers of events
in all search regions are found to be consistent with the expectations from standard
model processes. Exclusion limits are presented for simplified supersymmetric mod-
els of gluino pair production. Depending on the assumed gluino decay mechanism,
and for a massless, weakly interacting, lightest neutralino, lower limits on the gluino
mass from 1440 to 1600 GeV are obtained, significantly extending previous limits.
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1 Introduction
The standard model (SM) of particle physics successfully describes a wide range of phenomena.
However, in the SM, the Higgs boson mass is unstable to higher-order corrections, suggesting
that the SM is incomplete. Many extensions to the SM have been proposed to provide a more
fundamental theory. Supersymmetry (SUSY) [1–8], one such extension, postulates that each
SM particle is paired with a SUSY partner from which it differs in spin by one-half unit. As
examples, squarks and gluinos are the SUSY partners of quarks and gluons, respectively, while
neutralinos χ̃0 (charginos χ̃±) arise from a mixture of the SUSY partners of neutral (charged)
Higgs and electroweak gauge bosons. Radiative corrections involving SUSY particles can com-
pensate the contributions from SM particles and thereby stabilize the Higgs boson mass. For
this cancellation to be “natural” [9–12], the top squark, bottom squark, and gluino must have
masses on the order of a few TeV or less, possibly allowing them to be produced at the CERN
LHC.

Amongst SUSY processes, gluino pair production, typically yielding four or more hadronic
jets in the final state, has the largest potential cross section, making it an apt channel for early
SUSY searches in the recently started LHC Run 2. Furthermore, in R-parity [13] conserving
SUSY models, as are considered here, the lightest SUSY particle (LSP) is stable and assumed
to be weakly interacting, leading to potentially large undetected, or “missing”, transverse mo-
mentum. Supersymmetry events at the LHC might thus be characterized by significant missing
transverse momentum, numerous jets, and — in the context of natural SUSY — jets initiated
by top and bottom quarks.

This Letter describes a search for gluino pair production in the all-hadronic final state. The data,
corresponding to an integrated luminosity of 2.3 fb−1 of proton-proton collisions at a center-of-
mass energy of

√
s = 13 TeV, were collected with the CMS detector in 2015, the initial year

of the LHC Run 2. Recent searches for gluino pair production at
√

s = 8 TeV, based on data
collected in LHC Run 1, are presented in Refs. [14–16]. Because of the large mass scales and
their all-hadronic nature, the targeted SUSY events are expected to exhibit large values of HT,
where HT is the scalar sum of the transverse momenta (pT) of the jets. As a measure of missing
transverse momentum, we use the variable Hmiss

T , which is the magnitude of the vector sum of
the jet pT. We present a general search for gluino pair production leading to final states with
large HT, large Hmiss

T , and large jet multiplicity. The data are examined in bins of Njet, Nb-jet, HT,
and Hmiss

T , where Njet is the number of jets and Nb-jet the number of tagged bottom quark jets
(b jets). The search is performed in exclusive bins of these four observables.

We consider SUSY scenarios in the context of four simplified models [17–20] of new particle
production. Diagrams for the four models are shown in Fig. 1. Simplified models contain
the minimal particle content to represent a topological configuration. As SUSY production
scenarios, the four simplified models can be interpreted as follows. In the first scenario, shown
in Fig. 1 (upper left), gluino pair production is followed by the decay of each gluino to a bottom
quark and an off-shell bottom squark. The off-shell bottom squark decays to a bottom quark
and the LSP, where the LSP is assumed to be the lightest neutralino χ̃0

1 and to escape detection,
leading to significant Hmiss

T . The second scenario, shown in Fig. 1 (upper right), is the same
as the first scenario except with top quarks and squarks in place of the bottom quarks and
squarks. The third scenario, shown in Fig. 1 (lower left), is the corresponding situation with
gluino decay to a light-flavored squark-quark combination: up, down, strange, and charm with
equal probability, for each gluino separately. In the fourth scenario, shown in Fig. 1 (lower
right), also based on gluino pair production, each gluino similarly decays to a light-flavored
quark and corresponding off-shell squark. The off-shell squark decays to a quark and to either
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Figure 1: Event diagrams for the new-physics scenarios considered in this study: the (upper
left) T1bbbb, (upper right) T1tttt, (lower left) T1qqqq, and (lower right) T5qqqqVV simplified
models.

the next-to-lightest neutralino χ̃0
2 or the lightest chargino χ̃±1 . The probability for the decay to

proceed via the χ̃0
2, χ̃+

1 , or χ̃−1 , integrated over the event sample, is 1/3 for each possibility.
The χ̃0

2 (χ̃±1 ) subsequently decays to the χ̃0
1 LSP and to a Z (W±) boson. We refer to the four

simplified models as the T1bbbb, T1tttt, T1qqqq, and T5qqqqVV scenarios, respectively [21].
Thus the first two scenarios explicitly presume either bottom or top squark production. The
latter two scenarios represent more inclusive situations and provide complementary sensitivity
to top squark production for large values of Njet. We assume all SUSY particles other than the
gluino, the LSP, and — for the T5qqqqVV models — the χ̃0

2 and χ̃±1 , to be too heavy to be
directly produced, and the gluino to be short-lived.

The principal sources of background arise from the SM production of top quarks, a W or Z
boson in association with jets (W+jets or Z+jets events), and multiple jets through the strong
interaction. We refer to the latter class of background as quantum chromodynamics (QCD)
multijet events. The events with top quarks mostly arise from top quark-antiquark (tt) produc-
tion, but also from single top quark processes. The W and Z bosons in W+jets and Z+jets events
can be either on- or off-shell. For top quark and W+jets events, significant Hmiss

T can arise if a
W boson decays leptonically, producing a neutrino and an undetected charged lepton, while
Z+jets events can exhibit significant Hmiss

T if the Z boson decays to two neutrinos. For QCD
multijet events, significant Hmiss

T can arise if the event contains a charm or bottom quark that
undergoes a semileptonic decay, but the principal source of Hmiss

T is the mismeasurement of
jet pT.

This study combines and extends search strategies developed for the analysis of CMS data
collected at

√
s = 8 TeV, specifically the study of Ref. [22], which examined data in bins of Nb-jet

but not Njet and proved to be sensitive to the T1bbbb scenario, and the study of Ref. [23], which
examined data in bins of Njet but not Nb-jet and proved to be sensitive to the T1tttt, T1qqqq, and
T5qqqqVV scenarios. Here, the two approaches are combined in a unified framework to yield
a more comprehensive and inclusive study with improved sensitivity.

2 Detector, trigger, and event reconstruction
The CMS detector is built around a superconducting solenoid of 6 m internal diameter, provid-
ing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip tracker, a



3

lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron
calorimeter (HCAL). The ECAL and HCAL, each composed of a barrel and two endcap sec-
tions, extend over a pseudorapidity range |η| < 3.0. Forward calorimeters on each side of the
interaction point encompass 3.0 < |η| < 5.0. The tracking detectors cover |η| < 2.5. Muons
are measured within |η| < 2.4 by gas-ionization detectors embedded in the steel flux-return
yoke outside the solenoid. The detector is nearly hermetic, permitting accurate measurements
of Hmiss

T . A more detailed description of the CMS detector, together with a definition of the
coordinate system and relevant kinematic variables, is given in Ref. [24].

Signal event candidates are recorded using trigger conditions based on thresholds on HT and
missing transverse momentum. The trigger efficiency, which exceeds 98% following applica-
tion of the event selection criteria described below, is measured in data and is accounted for in
the analysis. Separate data samples requiring the presence of either charged leptons or photons
are used for the determination of backgrounds from SM processes, as discussed below.

Physics objects are defined using the particle-flow (PF) algorithm [25, 26], which reconstructs
and identifies individual particles through an optimized combination of information from dif-
ferent detector components. The PF candidates are classified as photons, charged hadrons,
neutral hadrons, electrons [27], or muons [28]. The event primary vertex is taken to be the re-
constructed vertex with the largest sum of charged-track p2

T values and is required to lie within
24 cm (2 cm) of the center of the detector in the direction along (perpendicular to) the beam
axis. Charged tracks from extraneous pp interactions within the same or a nearby bunch cross-
ing (“pileup”) are removed [29]. The PF objects serve as input for jet reconstruction, based on
the anti-kT algorithm [30, 31] with a distance parameter of 0.4. Jet quality criteria as described
in Ref. [32] are applied to eliminate, for example, spurious events caused by calorimeter noise.
Contributions to an individual jet’s pT from pileup interactions are subtracted [33], and cor-
rections are applied as a function of jet pT and η to account for residual effects of nonuniform
detector response [34]. Jets must have pT > 30 GeV.

The identification of b jets is performed by applying the combined secondary vertex algorithm
at the medium working point [35, 36] to reconstructed jets. The b tagging efficiency, and the
probabilities to misidentify a light-flavor quark or gluon jet, or a charm quark, as a b jet, are
measured in data control regions as a function of jet pT and η. The signal efficiency for b jets
(misidentification probability for light-flavor quark or gluon jets) is approximately 55% (1.6%)
for jets with pT ≈ 30 GeV [36]. The corresponding misidentification probability for a charm
quark jet is around 12%.

Electrons and muons are required to be isolated in order to reduce background from events
with bottom and charm quarks. The isolation criterion is based on the variable I, which is
the scalar pT sum of all PF charged hadrons, neutral hadrons, and photons within a cone of
radius R =

√
(∆φ)2 + (∆η)2 around the lepton direction, divided by the lepton pT, where

φ is the azimuthal angle. The sum excludes the lepton under consideration and is corrected
for the contribution of pileup [29]. The cone radius is R = 0.2 (0.05) for lepton pT ≤ 50 GeV
(>200 GeV), and R = 10 GeV/pT for 50 ≤ pT ≤ 200 GeV. The reason for the decrease in R with
increasing lepton pT is to account for the increased collimation of the lepton parent particle’s
decay products as the object’s Lorentz boost increases. We require I < 0.1 (< 0.2) for electrons
(muons).

Charged tracks not identified as an isolated electron or muon are also subjected to an isolation
criterion. To be considered an isolated charged-particle track, the scalar sum of charged-track
pT values (excluding the track under consideration) in a cone of radius R = 0.3 around the
track direction, divided by the track pT, must be less than 0.2 if the track is identified by the PF
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procedure as electron or muon, and less than 0.1 otherwise.

3 Event selection and search regions
The following requirements define the selection criteria for signal event candidates:

• Njet ≥ 4, where the jets must satisfy |η| < 2.4; we require at least four jets because of
our focus on gluino pair production;

• HT > 500 GeV, where HT is the scalar pT sum of jets with |η| < 2.4;

• Hmiss
T > 200 GeV, where Hmiss

T is the magnitude of ~Hmiss
T , the negative of the vector

pT sum of jets with |η| < 5; the η range is extended in this case so that ~Hmiss
T better

represents the total missing transverse momentum in an event;

• no identified, isolated electron or muon candidate with pT > 10 GeV; electron (muon)
candidates are restricted to |η| < 2.5 (<2.4);

• no isolated charged-particle track with |η| < 2.4, mT < 100 GeV, and pT > 10 GeV
(pT > 5 GeV if the track is identified as an electron or muon candidate by the PF
algorithm), where mT is the transverse mass [37] formed from the ~pmiss

T and isolated-
track pT vector, with ~pmiss

T the negative of the vector pT sum of all PF objects;

• ∆φHmiss
T ,ji > 0.5 (>0.3) for the two highest pT jets j1 and j2 (the next two highest pT jets

j3 and j4), with ∆φHmiss
T ,ji the angle between ~Hmiss

T and the pT vector of jet ji.

The isolated-track requirement eliminates events with a hadronically decaying τ lepton, as well
as isolated electrons or muons in cases where the lepton is not identified; the mT requirement
restricts this veto to tracks consistent with a W boson decay in order to minimize the impact on
signal efficiency. For all-hadronic events, ~pmiss

T and ~Hmiss
T are similar, but ~Hmiss

T is less suscepti-
ble to uncertainties in modeling of soft energy deposits. We choose ~pmiss

T for the mT calculation
for consistency with previous practice. The ∆φHmiss

T ,ji requirements reduce the background from

QCD multijet processes, for which ~Hmiss
T is usually aligned along a jet direction.

The search is performed in the following exclusive intervals of the four search variables:

• Njet: 4–6, 7–8, ≥9;

• Nb-jet: 0, 1, 2, ≥3;

• HT: 500–800, 800–1200, ≥1200 GeV;

• Hmiss
T : 200–500, 500–750, ≥750 GeV.

Bins with both HT < 800 GeV and Hmiss
T > 750 GeV are discarded because events with Hmiss

T &
HT are very likely to be background. Additionally, for 500 < Hmiss

T < 750 GeV, an expanded
interval 500 < HT < 1200 GeV is used, and for Hmiss

T > 750 GeV a single interval HT > 800 GeV,
because of the low expected number of signal events at large Hmiss

T . The six search intervals in
the Hmiss

T versus HT plane are illustrated schematically in Fig. 2. The total number of search
regions is 72.

A breakdown of the efficiency at different stages of the selection process for two representative
signal models in given in Appendix A.
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Figure 2: Schematic illustration of the search intervals in the Hmiss
T versus HT plane. Each of the

six HT and Hmiss
T intervals is examined in three Njet and four Nb-jet bins for a total of 72 search

regions.

4 Event simulation
The background is mostly evaluated using data control regions, as described below (Section 5).
Simulated samples of SM events are used to construct and validate the procedures and to es-
timate a few of the smaller background components. The MADGRAPH5 aMC@NLO 2.2.2 [38]
event generator at leading order is used to simulate tt, W+jets, Z+jets, γ+jets, and QCD multijet
events. This same generator at next-to-leading (NLO) order is used to describe single top events
in the s channel, events with dibosons (WW, ZZ, and WH production, etc., with H a Higgs bo-
son), and rare processes (ttW, ttZ, and WWZ production, etc.), except WW events in which both
W bosons decay leptonically are described with the POWHEG v1.0 [39–43] program at NLO. Sin-
gle top events in the t and tW channels are also described with POWHEG at NLO. Simulation
of the detector response is based on the GEANT4 [44] package. The simulated samples are nor-
malized using the most accurate cross section calculations currently available [38, 42, 43, 45–53],
generally with NLO or next-to-NLO accuracy.

Signal T1bbbb, T1tttt, T1qqqq, and T5qqqqVV events are generated for a range of gluino mg̃ and
LSP mχ̃0

1
mass values, with mχ̃0

1
< mg̃. For the T5qqqqVV model, the masses of the intermediate

χ̃0
2 and χ̃±1 states are taken to be the mean of mχ̃0

1
and mg̃. The signal samples are generated

with the MADGRAPH5 aMC@NLO program at leading order, with up to two partons present
in addition to the gluino pair. The decays of the gluino are described with a pure phase-space
matrix element [54]. The signal production cross sections are computed [55–59] with NLO
plus next-to-leading-logarithm (NLL) accuracy. To reduce computational requirements, the
detector is modeled with the CMS fast simulation program [60, 61], which yields consistent
results compared with the GEANT4-based simulation, except that we apply a correction of 1%
to account for differences in the efficiency of the jet quality requirements [32], and corrections
of 3–10% to account for differences in the b jet tagging efficiency.

The NNPDF3.0LO [62] parton distribution functions (PDF) are used for the simulated samples
generated at leading order, and the NNPDF3.0NLO [62] PDFs for the samples generated at
NLO. All simulated samples use the PYTHIA 8.2 [54] program to describe parton showering
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and hadronization. To model the effects of pileup, the simulated events are generated with a
nominal distribution of pp interactions per bunch crossing and then reweighted to match the
corresponding distribution in data.

Table 1: Summary of systematic uncertainties that affect the signal event selection efficiency.
The results are averaged over all search regions. The variations correspond to different signal
models and choices of the gluino and LSP masses.

Item Relative uncertainty (%)
Trigger efficiency 0.5–1.1
Pileup reweighting 0.1–0.5
Jet quality requirements 1.0
Renormalization and factorization scales 0.1–3.0
Initial-state radiation 0.02–10.0
Jet energy scale 0.5–4.0
Isolated lepton and track vetoes (T1tttt and T5qqqqVV only) 2.0
Total 1.5–11.0

We evaluate systematic uncertainties in the signal model predictions. Those that are relevant
for the selection efficiency are listed in Table 1. The uncertainty associated with the renormal-
ization and factorization scales is determined by varying each scale independently by factors
of 2.0 and 0.5 [63, 64]. An uncertainty related to the modeling of initial-state radiation (ISR)
is determined by comparing the simulated and measured pT spectra of the system recoiling
against the ISR jets in tt events, using the technique described in Ref. [65]. The two spectra are
observed to agree. The statistical precision of the comparison is used to define an uncertainty
of 15% (30%) for 400 < pT < 600 GeV (pT > 600 GeV), while no uncertainty is deemed neces-
sary for pT < 400 GeV. The uncertainties associated with the renormalization and factorization
scales, and with ISR, integrated over all search regions, typically lie below 0.1% but can be as
large as 1–3%, and 3–10%, respectively, for mχ̃0

1
∼ mg̃ (note that for the T1tttt model, mχ̃0

1
∼ mg̃

is used as notation to mean mχ̃0
1
+ 2mt ≈ mg̃ with mt the top quark mass, while for the T1bbbb,

T1qqqq, and T5qqqqVV models mχ̃0
1
∼ mg̃ means mχ̃0

1
≈ mg̃). The uncertainty associated with

the jet energy scale is evaluated as a function of jet pT and η. Note that the isolated lepton and
track vetoes do not affect the T1bbbb and T1qqqq samples since events in these samples rarely
contain an isolated charged track.

The sources of systematic uncertainty associated with the trigger efficiency, pileup reweighting,
renormalization and factorization scales, ISR, and jet energy scale can also affect the shapes of
the signal distributions, i.e., cause a migration of events between signal regions.

We also evaluate systematic uncertainties in the signal predictions related to the b jet tagging
and misidentification efficiencies and to the statistical uncertainties in the signal event samples.
These sources of uncertainty do not affect the signal efficiency but can potentially alter the
signal distribution shapes. The systematic uncertainty in the determination of the integrated
luminosity is 4.6%.

5 Background evaluation
5.1 Background from top quark and W+jets events

Background from SM tt, single top quark, and W+jets events arises when a W boson decays lep-
tonically, yielding a neutrino (thus, genuine Hmiss

T ) and a non-vetoed charged lepton. The non-
vetoed lepton can be an electron or muon (including from τ lepton decay) that does not satisfy
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the identification requirements of Section 3 (so-called “lost leptons”), or it can be a hadronically
decaying τ lepton.

5.1.1 Lost-lepton background

Lost-lepton background can arise if an electron or muon lies outside the analysis acceptance,
is not isolated, or is not reconstructed. The lost-lepton background is evaluated following the
procedures established in Refs. [23, 66, 67]. Briefly, single-lepton control regions (CRs) are
selected by inverting the electron and muon vetoes. Each CR event is entered into one of the
72 search regions with a weight that represents the probability for a lost-lepton event to appear
with the corresponding values of HT, Hmiss

T , Njet, and Nb-jet.

The CRs are selected by requiring events to satisfy the criteria of Section 3 except exactly one
isolated electron or muon must be present and the isolated-track veto is not applied. The trans-
verse mass formed from the ~pmiss

T and lepton pT vector is required to satisfy mT < 100 GeV.
The weights, accounting for the probability for a lepton to be “lost”, are determined from the
tt, W+jets, single top quark, and rare process simulations through evaluation of the efficiency
of the acceptance, reconstruction, and isolation requirements as a function of HT, Hmiss

T , Njet,
lepton pT, and other kinematic variables. Corrections are applied to the weights to account for
the trigger efficiency, contamination due to nonprompt electrons, contamination due to dilep-
ton events in which one of the leptons is lost, and the selection efficiency of the mT requirement.
Corresponding efficiencies are evaluated for dileptonic events in which both leptons are lost.
This latter source of background is predicted to account for <2% of the total lost-lepton back-
ground. Finally, a correction is applied to account for the selection efficiency of the isolated-
track veto.

The weighted distributions of the search variables, summed over the events in the CRs, de-
fine the lost-lepton background prediction. The procedure is performed separately for single-
electron and single-muon events. The two independent predictions yield consistent results and
are averaged to obtain the final lost-lepton background prediction. The method is validated
with a closure test, namely by determining the ability of the method, applied to simulated
samples, to predict correctly the true number of background events. The results of the closure
test are shown in the upper plot of Fig. 3.

The dominant uncertainties in the lost-lepton background prediction are statistical, due to the
limited number of CR events in the most sensitive search regions. As a systematic uncertainty,
we take the larger of the observed nonclosure in Fig. 3 (upper plot) or the statistical uncertainty
in the nonclosure, for each search region, where “nonclosure” refers to the difference between
the solid points and histogram. Additional systematic uncertainties are assigned based on a
comparison between data and simulation of the lepton reconstruction, lepton isolation, and
isolated track veto efficiencies. Within the statistical precision, there are no such differences ob-
served, and the statistical uncertainty in the respective comparison is assigned as a systematic
uncertainty. Uncertainties in the acceptance associated with the PDFs, including those related
to the renormalization and factorization scales, are evaluated by varying the PDF sets used to
produce the simulated samples. These uncertainties are defined by the maximum deviations
observed from 100 variations of the NNPDF3.0LO PDFs for tt and W+jets events. The uncer-
tainty in the jet energy correction is propagated to ~pmiss

T , and the resulting change in the mT
selection efficiency is used to define a systematic uncertainty. Small systematic uncertainties
related to the purity of the electron and muon CRs and to the statistical uncertainties in the
simulated efficiencies are also evaluated.
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Figure 3: (upper plot) The lost-lepton background in the 72 search regions of the analysis as de-
termined directly from tt, single top quark, W+jets, diboson, and rare-event simulation (points,
with statistical uncertainties) and as predicted by applying the lost-lepton background determi-
nation procedure to simulated electron and muon control samples (histograms, with statistical
uncertainties). The lower panel shows the same results following division by the predicted
value. (lower plot) The corresponding simulated results for the background from hadronically
decaying τ leptons. For both plots, the six results within each region delineated by dashed
lines correspond sequentially to the six regions of HT and Hmiss

T indicated in Fig. 2. Bins with-
out markers have no events in the control regions.
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5.1.2 Hadronically decaying τ lepton background

To evaluate the background due to W bosons that decay to a neutrino and a hadronically de-
caying τ lepton (τh), we employ a template method [23, 66, 67]. The τh background is deter-
mined from a single-muon CR, composed almost entirely of tt, single top quark, and W+jets
events, selected using a trigger that requires HT > 350 GeV and at least one muon candidate
with pT > 15 GeV. The CR events are required to contain exactly one identified muon with
pT > 20 GeV and |η| < 2.1. Since µ+jets and τh+jets production arises from the same under-
lying process, the hadronic component of the events is expected to be the same aside from the
response of the detector to a µ or τh. The muon pT in the single-muon CR is smeared according
to the response functions (“templates”) derived from tt and W+jets simulation. The templates
express the expected visible-pT distribution of a τh candidate as a function of the true τ-lepton
pT value, taken to be the measured muon pT.

Following the smearing, the values of HT, Hmiss
T , Njet, and Nb-jet are calculated for the CR event,

and the selection criteria of Section 3 are applied. The misidentification probability for a τh jet to
be erroneously identified as a b jet is taken into account. Corrections are applied to account for
the trigger efficiency, the acceptance and efficiency of the µ selection, and the ratio of branching
fractions BF(W → τhν)/BF(W → µν) = 0.65 [68]. The resulting event yield provides the τh
background estimate. The method is validated with a closure test, whose results are shown in
the lower plot of Fig. 3. Systematic uncertainties are assigned based on the level of closure, as
described for the lost-lepton background. Other systematic uncertainties are associated with
the muon acceptance, the response functions, and the misidentification rate of τh jets as b jets.
The dominant uncertainty, as for the lost-lepton background, arises from the limited number
of events in the CR.

5.2 Background from Z → νν events

A straightforward method to evaluate the background from Z+jets events with Z→ νν consists
of selecting Z+jets events with Z → `+`− (` = e, µ), removing the `+ and `− to emulate the
Z→ νν process, and applying the event selection criteria of Section 3. The resulting efficiency-
corrected event yields can be directly translated into a prediction for the Z → νν background
through multiplication by the known ratio of branching fractions [68]. A limitation of this
procedure is the small Z→ `+`− branching fraction.

An alternative approach is to exploit the similarity between Z boson radiation and the more co-
pious radiation of photons by selecting γ+jets events, removing the photon from the event, and
applying the selection criteria of Section 3. The γ+jets process differs from the Z+jets process
because of threshold effects associated with the Z boson mass and because of the different cou-
plings of Z bosons and photons to up- and down-type quarks. These differences are generally
well understood and described adequately with simulation.

Our evaluation of the Z → νν background utilizes both approaches. A γ+jets CR is selected
using a trigger that requires HT > 500 GeV and photon pT > 90 GeV. A Z+jets CR with Z →
`+`− is selected using a trigger that requires HT > 350 GeV and at least one electron or muon
with pT > 15 GeV. Fits as described in Refs. [23] and [22] are used to extract the prompt-
photon and Z boson yields, respectively. Because of current limitations in the simulations for
the theoretical modeling of γ+jets versus Z+jets production with heavy flavor jets, we restrict
the use of γ+jets events to the 18 search regions with Nb-jet = 0. The Z → `+`− sample,
integrated over HT and Hmiss

T because of the limited statistical precision, is used to extrapolate
the Nb-jet = 0 results to the Nb-jet > 0 search regions.
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The γ+jets analysis is similar to that presented in Ref. [23]. We predict the number Npred
Z→νν of

Z(→ νν)+jets events contributing to each Nb-jet = 0 search region from the number Ndata
γ of

events in the corresponding Njet, HT, and Hmiss
T bin of the γ+jets CR:

Npred
Z→νν

∣∣∣
Nb-jet=0

= ρRZ→νν/γβγNdata
γ , (1)

where βγ is the purity of the CR and RZ→νν/γ the ratio from simulation of the numbers of
Z(→ νν)+jets events to γ+jets events, with the γ+jets term obtained from a leading-order
MADGRAPH5 aMC@NLO calculation. Corrections are applied to account for the efficiency dif-
ferences between the data and simulation and for an angular cutoff in the simulation that con-
trols the singularity associated with soft collinear radiative corrections. The factor ρ [23] in
Eq. (1), defined as

ρ =
Rdata

Z→`+`−/γ

Rsim
Z→`+`−/γ

=
Ndata

Z→`+`−

Ndata
γ

Nsim
γ

Nsim
Z→`+`−

, (2)

uses the Z → `+`− CR to account for potential differences in RZ→νν/γ between simulation
[“sim” in Eq. (2)] and data, such as those expected due to missing higher-order terms in the
γ+jets calculation, and is found to have a value of 0.92 (taken to be constant), with uncertainties,
deduced from linear fits to projections onto each dimension, that vary with Njet, HT, and Hmiss

T
between 8 and 60%.

For search regions with Nb-jet > 0, the Z→ νν background estimate is(
Npred

Z→νν

)
j,b,k

=
(

Npred
Z→νν

)
j,0,k
Fj,b; (3)

Fj,b =
(

Ndata
Z→`+`−β``

)
0,b

/
(

Ndata
Z→`+`−β``

)
0,0
Jj,b; (4)

Jj,b = Nmodel
j,b /Nmodel

0,b , (5)

where j, b, and k are bin indices (numbered from zero) for the Njet, Nb-jet, and kinematic (i.e., HT

and Hmiss
T ) variables, respectively. The first term on the right-hand side of Eq. (3) is obtained

from Eq. (1). The Nb-jet extrapolation factor F [Eq. (4)] is obtained from the fitted Z → `+`−

yields, with corrections to account for the Nb-jet-dependent purity β``. Other efficiencies cancel
in the ratio. The dependence of the Nb-jet shape of F on Njet is described with the factor J
[Eq. (5)], which is determined using a model estimate Nmodel

j,b because of the limited statistical
precision of the Z → `+`− data. The model uses the results of the Z → `+`− simulation for
the central value of J . Based on simulation studies, we determine corresponding upper and
lower bounds to define a systematic uncertainty. As a lower bound on J , we set Nmodel

j,b =

Nmodel
0,b , i.e., Jj,b = 1 in Eq. (4). In this limit F is independent of Njet, corresponding to a

factorization of the mechanisms to produce bottom quark jets and additional jets. As an upper
bound, we take Nmodel

j,b = ∑Njet∈j,Nb-jet∈b B(Nb-jet|Njet; p), where B is a binomial distribution,
with p the probability for a jet to be tagged as a b jet. In both simulation and data we find
p to be independent of Njet. This binomial behavior would be expected should all tagged b
jets be erroneous, i.e., not initiated by b quarks, or should the production of quarks in the
hadron shower not depend on flavor except via a scale factor that is absorbed into the empirical
factor p. With respect to a systematic uncertainty, the factorization and binomial extrapolations
represent opposite extremes. The binomial assumption is validated in simulation; the result
p = 0.062± 0.007 is obtained from a fit to the data, of which'0.02 is attributable to light-parton
or charm quark jets erroneously identified as b jets. The resulting systematic uncertainties in
J range from a few percent to ≈60%, depending on Njet and Nb-jet.
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Figure 4: The Z→ νν background in the 72 search regions of the analysis as determined directly
from Z(→ νν)+jets and ttZ simulation (points), and as predicted by applying the Z → νν
background determination procedure to statistically independent Z(→ `+`−)+jets simulated
event samples (histogram). For bins corresponding to Nb-jet = 0, the agreement is exact by
construction. The lower panel shows the ratio between the true and predicted yields. For both
the upper and lower panels, the shaded regions indicate the quadrature sum of the systematic
uncertainty associated with the dependence of F on the kinematic parameters (HT and Hmiss

T )
and the statistical uncertainty of the simulated sample. The labeling of the search regions is the
same as in Fig. 3.

A closure test of the method is presented in Fig. 4. The shaded bands represent the systematic
uncertainty (10–20%, depending on Nb-jet) arising from our treatment of F as independent of
the kinematic parameters, combined with the statistical uncertainty of the Z(→ `+`−)+jets
simulation.

Rare processes such as ttZ and V(V)Z (V = W or Z) production can contribute to the back-
ground. We add the expectations for these processes, obtained from simulation, to the back-
ground predicted from the procedure described above. Note that processes with a Z boson and
a Z→ γ counterpart are already accounted for in Ndata

γ and largely cancel in theRZ→νν/γ ratio.
For signal regions with Nb-jet ≥ 2, the contribution of ttZ events is found to be comparable to
that from Z+jets events, with an uncertainty of ≈50%, consistent with the rate and uncertainty
for ttZ events found in Ref. [69].

Besides the uncertainty related to the Nb-jet extrapolation, discussed above, systematic uncer-
tainties associated with the statistical precision of the simulation, the photon reconstruction ef-
ficiency, the photon and dilepton purities, and the ρRZ→νν/γ term are evaluated. Of these, the
ρRZ→νν/γ term (10–60%) dominates the overall uncertainty except in the highest (Njet, Nb-jet)
search regions where the overall uncertainty is dominated by the statistical precision of the
simulation (70–110%) and by the uncertainty in the Z → `+`− purity (40%). The underlying
source of the leading systematic uncertainties is the limited number of events in the CR.
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5.3 Background from QCD multijet events

To evaluate the background associated with QCD multijet production, we select a QCD dom-
inated CR by inverting the ∆φHmiss

T ,ji requirements, i.e., by requiring at least one of the four
highest pT jets in an event to fail the respective ∆φHmiss

T ,ji selection criterion listed in Section 3.
The resulting sample is called the “low-∆φ” CR. The QCD background in each search region is
given by the product of the observed event yield in the corresponding region of the low-∆φ CR
multiplied by a factor RQCD expressing the ratio of the expected QCD multijet background in
the respective signal and low-∆φ regions, taking into account the contributions from non-QCD
SM processes. The non-QCD SM contributions to the low-∆φ CR, which correspond to around
14% of the events in this CR, are evaluated using the techniques described above for the top
quark, W+jets, and Z+jets backgrounds, except with the inverted ∆φHmiss

T ,ji requirements. The
RQCD terms are determined primarily from data, as described below. The procedure is analo-
gous to that used in Refs. [22, 70] to evaluate the QCD multijet background.

The RQCD factor increases with Njet but is found empirically to have a negligible dependence
on Nb-jet for a given Njet value. We therefore divide the 4 ≤ Njet ≤ 6 search region into three
exclusive bins: Njet = 4, 5, and 6. Once this is done, there is no dependence of RQCD on Nb-jet.
Similarly, we divide the 200 ≤ Hmiss

T ≤ 500 GeV search region into two bins: 200 < Hmiss
T <

300 GeV and 300 < Hmiss
T < 500 GeV; the first of these two bins is enhanced in QCD background

events, both in the low-∆φ and signal samples. The HT, Hmiss
T , and Njet dependence of RQCD is

modeled as:
RQCD

i,j,k = KHT,iSHmiss
T ,jSNjet,k, (6)

where i, j, and k are bin indices. The KHT,i term is the ratio of the expected number of QCD
multijet events in the signal region to that in the low-∆φ region for HT bin i in the first Hmiss

T and
Njet bins. The SHmiss

T ,j term represents a correction for Hmiss
T bin j with respect to the first Hmiss

T
bin, and the SNjet,k term a correction for Njet bin k with respect to the first Njet bin. The KHT,i and
SNjet,k terms are determined from a fit to data in the 200 < Hmiss

T < 300 GeV bin, with the non-
QCD SM background taken into account. The SHmiss

T ,j terms are taken from the QCD multijet
simulation. Based on studies of the differing contributions of events in which the jet with the
largest pT mismeasurement is or is not amongst the four highest pT jets, uncertainties of 50,
100, and 100% are assigned to the Hmiss

T 300–500, 500–750, and ≥ 750 GeV bins, respectively, to
account for potential differences between data and simulation in the SHmiss

T ,j factors. Weighted
results for RQCD are calculated when recombining the Hmiss

T and Njet results to correspond to
the nominal search regions. Figure 5 presents closure test results for the method.

For the lowest Hmiss
T search region, the uncertainty in the prediction of the QCD multijet back-

ground is dominated by the uncertainties in KHT,i and SNjet,k, which themselves are mostly due
to uncertainties in the non-QCD SM background in the signal regions. For the two higher Hmiss

T
search regions, the uncertainty in SHmiss

T ,j and the limited statistical precision of the low-∆φ CR
dominate the uncertainty. The uncertainties related to potential nonclosure (Fig. 5) are either
small in comparison or statistical in nature and are not considered.

6 Results and interpretation
The observed numbers of events in the 72 search regions are shown in Fig. 6 in comparison
to the summed predictions for the SM backgrounds, with numerical values tabulated in Ap-
pendix B. The predicted background is observed to be statistically compatible with the data for
all 72 regions. Therefore, we do not observe evidence for new physics.
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Figure 5: The QCD multijet background in the 72 search regions of the analysis as determined
directly from QCD multijet simulation (points, with statistical uncertainties) and as predicted
by applying the QCD multijet background determination procedure to simulated event sam-
ples (histograms, with statistical and systematic uncertainties added in quadrature). The lower
panel shows the same results following division by the predicted value. The labeling of the
search regions is the same as in Fig. 3. Bins without markers have no events in the control
regions.

Figure 7 presents one-dimensional projections of the results in Hmiss
T or HT after criteria are

imposed, as indicated in the legends, to select intervals of the search region parameter space
particularly sensitive to the T1bbbb, T1tttt, T1qqqq, or T5qqqqVV scenario. In each case, exam-
ple distributions are shown for two signal scenarios not excluded by our Run 1 studies [22, 23].
These scenarios, one with mg̃ � mχ̃0

1
and one with mχ̃0

1
∼ mg̃, lie well within the parameter

space excluded by the present analysis (see below).

A likelihood fit to data is used to set limits on the production cross sections of the signal scenar-
ios. The limits are determined as a function of mχ̃0

1
and mg̃. The likelihood function is the prod-

uct of Poisson probability density functions, one for each signal region, and constraint terms
that account for uncertainties in the background predictions and signal yields. These uncer-
tainties are treated as nuisance parameters with log-normal probability density functions. Cor-
relations are taken into account where appropriate. The signal model uncertainties associated
with the renormalization and factorization scales, ISR, the jet energy scale, the b jet tagging, and
the statistical fluctuations vary substantially with the event kinematics and are evaluated as a
function of mχ̃0

1
and mg̃. The test statistic is qµ = −2 ln

(
Lµ/Lmax

)
, where Lmax is the maximum

likelihood determined by allowing all parameters including the SUSY signal strength µ to vary,
and Lµ is the maximum likelihood for a fixed signal strength. To set limits, we use asymptotic
results for the test statistic [71] and the CLs method described in Refs. [72, 73]. More details are
provided in Refs. [15, 74].

We proceed to evaluate 95% confidence level (CL) upper limits on the signal cross sections. The
potential contributions of signal events to the control regions are taken into account when com-
puting these limits. The NLO+NLL cross section is used as a reference to evaluate correspond-
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Figure 6: Observed numbers of events and corresponding SM background predictions in the
72 search regions of the analysis, with fractional differences shown in the lower panel. The
shaded regions indicate the total uncertainties in the background predictions. The labeling of
the search regions is the same as in Fig. 3.

ing 95% CL exclusion curves. In addition to the observed limits, expected limits are derived
by evaluating the expected Poisson fluctuations around the predicted numbers of background
events when evaluating the test statistic. The results are shown in Fig. 8. For a massless LSP,
we exclude gluinos with masses below 1600, 1550, 1440, and 1450 GeV, respectively, for the
T1bbbb, T1tttt, T1qqqq, and T5qqqqVV scenarios. These results significantly extend those we
obtained at

√
s = 8 TeV, for which the corresponding limits are around 1150 GeV [22, 23] for

the three T1 models and 1280 GeV [23] for the T5 model.

7 Summary
A search is presented for an anomalously high rate of events with four or more jets, no identi-
fied isolated electron or muon or isolated charged track, large scalar sum HT of jet transverse
momenta, and large missing transverse momentum, where this latter quantity is measured
with the variable Hmiss

T , the magnitude of the vector sum of jet transverse momenta. The search
is based on a sample of proton-proton collision data collected at

√
s = 13 TeV with the CMS de-

tector at the CERN LHC in 2015, corresponding to an integrated luminosity of 2.3 fb−1. The
principal standard model backgrounds, from events with top quarks, W bosons and jets, Z
bosons and jets, and QCD multijet production, are evaluated using control samples in the data.
The study is performed in the framework of a global likelihood fit in which the observed num-
bers of events in 72 exclusive bins in a four-dimensional array of Hmiss

T , the number of jets, the
number of tagged bottom quark jets, and HT, are compared to the standard model predictions.
The standard model background estimates are found to agree with the observed numbers of
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Figure 7: Observed numbers of events and corresponding SM background predictions for in-
tervals of the search region parameter space particularly sensitive to the (upper left) T1bbbb,
(upper right) T1tttt, (lower left) T1qqqq, and (lower right) T5qqqqVV scenarios. The selection
requirements are given in the figure legends. The hatched regions indicate the total uncertain-
ties in the background predictions. The (unstacked) results for two example signal scenarios
are shown in each instance, one with mg̃ � mχ̃0

1
and the other with mχ̃0

1
∼ mg̃. Note that for

purposes of presentation, the four-bin scheme discussed in Section 5.3 is used for the Hmiss
T

variable.
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Figure 8: The 95% CL upper limits on the production cross sections for the (upper left) T1bbbb,
(upper right) T1tttt, (lower left) T1qqqq, and (lower right) T5qqqqVV simplified models of su-
persymmetry, shown as a function of the gluino and LSP masses mg̃ and mχ̃0

1
. For the T5qqqqVV

model, the masses of the intermediate χ̃0
2 and χ̃±1 states are taken to be the mean of mχ̃0

1
and mg̃.

The solid (black) curves show the observed exclusion contours assuming the NLO+NLL cross
sections [55–59], with the corresponding ±1 standard deviation uncertainties [75]. The dashed
(red) curves present the expected limits with±1 standard deviation experimental uncertainties.
The diagonal dashed (grey) lines indicate the kinematic limits of the respective decay.
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events within the uncertainties. The results are interpreted with simplified models that, in the
context of supersymmetry, correspond to gluino pair production followed by the decay of each
gluino to an undetected lightest-supersymmetric-particle (LSP) neutralino χ̃0

1 and to a bottom
quark-antiquark pair (T1bbbb model), a top quark-antiquark pair (T1tttt model), or a light-
flavored quark-antiquark pair (T1qqqq model). We also consider a scenario corresponding to
gluino pair production followed by the decay of each gluino to a light-flavored quark-antiquark
pair and to either a next-to-lightest neutralino χ̃0

2 or a lightest chargino χ̃±1 , with χ̃0
2 → Zχ̃0

1 or
χ̃±1 →W±χ̃0

1 (T5qqqqVV model). Using the NLO+NLL production cross section as a reference,
and for a massless LSP, we exclude gluinos with masses below 1600, 1550, 1440, and 1450 GeV
for the four scenarios, respectively, significantly extending the limits from previous searches.
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A Selection efficiency for example signal models

Table 2: Absolute cumulative efficiencies in % for each step of the event selection process,
listed for three representative signal models and choices for the gluino and LSP masses. Only
statistical uncertainties are shown.

Selection pp→ g̃g̃, g̃→ bbχ̃0
1 pp→ g̃g̃, g̃→ ttχ̃0

1 pp→ g̃g̃, g̃→ qqχ̃0
1

mg̃ = 1500 GeV mg̃ = 1500 GeV mg̃ = 1000 GeV
mχ̃0

1
= 100 GeV mχ̃0

1
= 100 GeV mχ̃0

1
= 800 GeV

Njet ≥ 4 96.49± 0.08 99.96± 0.01 76.87± 0.14
HT > 500 GeV 96.46± 0.08 99.89± 0.01 38.30± 0.16
Hmiss

T > 200 GeV 87.21± 0.15 88.65± 0.10 24.46± 0.14
Nmuon = 0 86.59± 0.15 56.00± 0.15 24.42± 0.14
Nelectron = 0 85.95± 0.15 35.21± 0.15 24.26± 0.14
N(muon)

isolated tracks = 0 85.66± 0.15 34.46± 0.15 24.19± 0.14
N(electron)

isolated tracks = 0 85.17± 0.16 33.50± 0.15 24.00± 0.14
N(hadron)

isolated tracks = 0 84.20± 0.16 31.57± 0.14 23.26± 0.14
∆φHmiss

T ,ji > 0.5, 0.5, 0.3, 0.3 62.00± 0.21 23.96± 0.13 17.66± 0.12
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B Prefit background predictions

Table 3: Observed numbers of events and prefit background predictions for 4 ≤ Njet ≤ 6. These
results are displayed in the leftmost section of Fig. 6. The first uncertainty is statistical and the
second systematic.

Bin Hmiss
T [GeV] HT [GeV] Nb-jet Lost-e/µ τ → had Z→ νν QCD Total Pred. Obs.

1 200-500 500-800 0 318.76+11.84+28.74
−11.82−27.67 310.30+10.78+19.37

−10.77−18.87 631.79+13.20+102.80
−13.20−81.76 219.89+3.82+109.99

−3.75−109.99 1480.74+26.46+154.23
−26.43−141.08 1602

2 200-500 800-1200 0 59.15+4.33+5.47
−4.29−5.28 69.08+5.21+5.67

−5.19−5.59 144.92+6.29+25.92
−6.29−20.42 99.78+1.78+33.52

−1.75−33.52 372.93+11.57+43.06
−11.52−40.00 390

3 200-500 1200+ 0 13.84+2.25+1.38
−2.17−1.30 14.38+2.57+1.56

−2.53−1.51 31.36+2.95+11.93
−2.95−8.33 90.43+1.95+24.21

−1.91−24.21 150.01+5.98+27.07
−5.87−25.68 149

4 500-750 500-800 0 11.49+1.93+1.57
−1.84−1.53 8.92+1.72+1.33

−1.66−1.32 61.62+4.41+18.46
−4.41−13.29 0.38+0.12+0.42

−0.09−0.29 82.40+5.73+18.57
−5.64−13.45 120

5 500-750 1200+ 0 1.95+1.04+0.50
−0.90−0.50 0.56+0.52+0.15

−0.25−0.15 5.45+1.32+2.12
−1.32−1.51 0.97+0.18+1.02

−0.15−0.82 8.92+2.05+2.41
−1.76−1.80 13

6 750+ 800+ 0 1.39+0.93+0.24
−0.77−0.23 1.77+0.99+0.34

−0.88−0.33 10.35+1.80+5.81
−1.80−4.06 0.24+0.09+0.26

−0.06−0.18 13.75+2.64+5.83
−2.45−4.08 12

7 200-500 500-800 1 171.23+8.42+16.95
−8.39−16.43 205.71+8.53+12.98

−8.52−12.60 127.47+20.90+30.82
−20.90−28.14 69.19+2.20+37.42

−2.13−37.42 573.60+27.00+52.72
−26.97−51.19 499

8 200-500 800-1200 1 31.37+3.98+2.95
−3.94−2.86 30.41+3.19+2.01

−3.16−1.93 29.24+4.92+7.40
−4.92−6.66 36.40+1.11+14.33

−1.07−14.33 127.42+8.77+16.49
−8.70−16.17 123

9 200-500 1200+ 1 6.29+1.77+0.84
−1.64−0.82 8.86+2.08+0.90

−2.03−0.83 6.33+1.19+2.66
−1.19−2.03 32.49+1.19+11.01

−1.15−11.01 53.96+4.20+11.39
−4.03−11.26 44

10 500-750 500-800 1 3.07+1.17+0.60
−1.00−0.59 2.64+0.96+0.49

−0.85−0.48 12.43+2.21+4.34
−2.21−3.48 0.07+0.04+0.09

−0.02−0.05 18.21+3.07+4.40
−2.88−3.57 22

11 500-750 1200+ 1 0.00+0.52+0.00
−0.00−0.00 0.07+0.46+0.02

−0.04−0.02 1.10+0.32+0.47
−0.32−0.36 0.38+0.12+0.41

−0.09−0.29 1.55+1.04+0.62
−0.34−0.46 1

12 750+ 800+ 1 0.00+0.50+0.00
−0.00−0.00 0.54+0.56+0.13

−0.32−0.13 2.09+0.50+1.23
−0.50−0.90 0.02+0.06+0.06

−0.00−0.02 2.64+1.18+1.24
−0.59−0.91 2

13 200-500 500-800 2 71.85+6.08+7.16
−6.05−6.67 77.18+4.98+5.48

−4.96−5.34 28.08+8.07+12.45
−8.07−12.14 15.94+1.13+8.76

−1.06−8.76 193.05+13.74+17.46
−13.69−17.24 202

14 200-500 800-1200 2 18.80+4.79+2.53
−4.75−2.20 17.30+2.67+1.29

−2.63−1.25 6.44+1.87+2.90
−1.87−2.81 9.49+0.61+3.80

−0.57−3.80 52.04+7.71+5.41
−7.63−5.36 45

15 200-500 1200+ 2 2.06+1.20+0.23
−0.98−0.22 3.31+1.28+0.34

−1.20−0.32 1.39+0.42+0.78
−0.42−0.68 5.57+0.53+1.99

−0.49−1.99 12.33+2.58+2.17
−2.27−2.14 15

16 500-750 500-800 2 1.90+1.84+0.65
−1.72−0.17 2.26+0.94+0.86

−0.82−0.86 2.74+0.81+1.40
−0.81−1.27 0.03+0.02+0.04

−0.01−0.02 6.92+2.90+1.65
−2.67−1.54 5

17 500-750 1200+ 2 3.33+3.37+1.35
−3.33−0.00 0.07+0.46+0.02

−0.05−0.01 0.24+0.09+0.14
−0.09−0.12 0.07+0.08+0.09

−0.04−0.03 3.71+3.83+0.16
−3.38−0.12 0

18 750+ 800+ 2 0.00+0.46+0.00
−0.00−0.00 0.04+0.46+0.02

−0.03−0.01 0.46+0.15+0.32
−0.15−0.26 0.03+0.06+0.05

−0.02−0.01 0.53+0.93+0.32
−0.16−0.26 1

19 200-500 500-800 3+ 6.27+1.76+0.79
−1.65−0.78 10.82+2.17+1.66

−2.12−1.62 6.48+3.77+3.00
−3.77−2.71 1.21+0.37+0.82

−0.29−0.82 24.78+5.46+3.59
−5.34−3.35 17

20 200-500 800-1200 3+ 0.24+0.67+0.03
−0.24−0.00 1.10+0.61+0.15

−0.40−0.14 1.49+0.87+0.70
−0.87−0.62 0.70+0.20+0.37

−0.16−0.37 3.53+1.56+0.80
−1.09−0.74 7

21 200-500 1200+ 3+ 0.80+0.91+0.13
−0.57−0.13 0.11+0.46+0.02

−0.05−0.02 0.32+0.19+0.19
−0.19−0.13 0.72+0.23+0.36

−0.18−0.36 1.95+1.40+0.43
−0.67−0.40 3

22 500-750 500-800 3+ 0.00+0.63+0.00
−0.00−0.00 0.03+0.46+0.01

−0.01−0.01 0.63+0.37+0.33
−0.37−0.26 0.05+0.11+0.09

−0.04−0.01 0.71+1.15+0.34
−0.37−0.26 0

23 500-750 1200+ 3+ 0.00+0.77+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.06+0.04+0.03
−0.04−0.02 0.00+0.05+0.02

−0.00−0.00 0.06+1.23+0.04
−0.04−0.02 0

24 750+ 800+ 3+ 0.00+0.58+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.11+0.06+0.08
−0.06−0.04 0.00+0.04+0.02

−0.00−0.00 0.11+1.04+0.08
−0.06−0.04 0
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Table 4: Observed numbers of events and prefit background predictions for 7 ≤ Njet ≤ 8. These
results are displayed in the central section of Fig. 6. The first uncertainty is statistical and the
second systematic.

Bin Hmiss
T [GeV] HT [GeV] Nb-jet Lost-e/µ τ → had Z→ νν QCD Total Pred. Obs.

25 200-500 500-800 0 18.78+3.08+2.31
−3.05−2.20 24.50+2.68+2.02

−2.64−2.00 27.40+2.78+6.72
−2.78−5.14 14.05+1.72+8.19

−1.54−8.19 84.72+6.62+11.00
−6.52−10.12 85

26 200-500 800-1200 0 12.53+1.83+2.19
−1.79−2.17 15.60+2.26+1.27

−2.22−1.25 17.29+2.25+4.19
−2.25−3.17 16.29+1.20+7.12

−1.12−7.12 61.72+4.83+8.63
−4.73−8.19 60

27 200-500 1200+ 0 2.88+1.15+0.32
−1.07−0.31 3.50+1.29+0.31

−1.20−0.30 6.03+1.29+2.34
−1.29−1.66 23.01+1.56+8.75

−1.46−8.75 35.42+3.17+9.07
−2.99−8.92 42

28 500-750 500-800 0 0.53+0.45+0.14
−0.26−0.13 0.81+0.66+0.19

−0.47−0.19 0.36+0.36+0.12
−0.36−0.00 0.06+0.10+0.09

−0.04−0.02 1.75+1.17+0.28
−0.82−0.23 1

29 500-750 1200+ 0 1.03+0.88+0.33
−0.80−0.24 1.44+0.93+0.29

−0.80−0.29 0.60+0.43+0.26
−0.43−0.18 0.26+0.17+0.30

−0.11−0.15 3.34+1.87+0.54
−1.66−0.44 1

30 750+ 800+ 0 0.17+0.38+0.09
−0.17−0.00 0.17+0.49+0.11

−0.17−0.00 0.56+0.40+0.34
−0.40−0.16 0.19+0.16+0.23

−0.09−0.10 1.09+0.97+0.41
−0.53−0.19 1

31 200-500 500-800 1 25.79+2.93+3.13
−2.90−3.04 31.75+2.96+2.34

−2.93−2.30 11.68+2.24+3.63
−2.24−3.82 8.08+1.36+5.05

−1.18−5.05 77.30+6.45+7.29
−6.35−7.39 63

32 200-500 800-1200 1 9.01+1.63+1.28
−1.58−1.10 14.38+2.02+1.35

−1.97−1.34 7.37+1.54+2.27
−1.54−2.39 7.57+0.85+3.69

−0.76−3.69 38.34+4.06+4.67
−3.94−4.73 43

33 200-500 1200+ 1 3.25+1.12+0.36
−1.01−0.34 6.33+1.49+0.67

−1.42−0.66 2.57+0.69+1.11
−0.69−0.99 13.70+1.22+5.93

−1.13−5.93 25.85+2.96+6.08
−2.77−6.06 29

34 500-750 500-800 1 0.46+0.49+0.11
−0.27−0.11 0.51+0.55+0.11

−0.29−0.11 0.15+0.16+0.06
−0.15−0.00 0.00+0.12+0.05

−0.00−0.00 1.12+1.06+0.17
−0.58−0.16 2

35 500-750 1200+ 1 0.00+0.40+0.00
−0.00−0.00 0.25+0.49+0.05

−0.18−0.05 0.26+0.19+0.12
−0.19−0.07 0.12+0.14+0.16

−0.07−0.05 0.63+0.92+0.21
−0.27−0.10 2

36 750+ 800+ 1 0.00+0.45+0.00
−0.00−0.00 0.02+0.46+0.01

−0.01−0.00 0.24+0.17+0.15
−0.17−0.07 0.00+0.08+0.03

−0.00−0.00 0.25+0.93+0.16
−0.17−0.07 1

37 200-500 500-800 2 13.15+2.16+1.54
−2.11−1.51 16.03+1.87+1.20

−1.81−1.18 4.79+1.46+2.36
−1.46−2.43 0.16+0.32+0.57

−0.00−0.16 34.13+4.29+3.09
−4.18−3.10 32

38 200-500 800-1200 2 6.33+1.29+0.74
−1.22−0.71 10.73+1.82+0.89

−1.76−0.88 3.03+0.95+1.48
−0.95−1.53 2.15+0.48+1.12

−0.40−1.12 22.24+3.29+2.18
−3.15−2.21 17

39 200-500 1200+ 2 1.73+0.79+0.20
−0.62−0.19 1.89+0.88+0.18

−0.75−0.18 1.06+0.38+0.61
−0.38−0.58 3.55+0.64+1.64

−0.55−1.64 8.22+1.82+1.77
−1.52−1.76 4

40 500-750 500-800 2 0.00+0.39+0.00
−0.00−0.00 0.04+0.46+0.01

−0.02−0.01 0.06+0.07+0.03
−0.06−0.00 0.00+0.12+0.05

−0.00−0.00 0.10+0.86+0.06
−0.06−0.01 0

41 500-750 1200+ 2 0.00+0.43+0.00
−0.00−0.00 0.07+0.47+0.04

−0.07−0.00 0.11+0.08+0.06
−0.08−0.02 0.03+0.11+0.05

−0.02−0.01 0.21+0.90+0.08
−0.11−0.03 1

42 750+ 800+ 2 0.00+0.34+0.00
−0.00−0.00 0.13+0.48+0.06

−0.13−0.00 0.10+0.07+0.07
−0.07−0.02 0.00+0.08+0.03

−0.00−0.00 0.23+0.82+0.08
−0.15−0.02 0

43 200-500 500-800 3+ 3.93+1.25+0.46
−1.16−0.45 5.78+1.31+0.68

−1.23−0.67 2.54+1.50+1.76
−1.50−1.04 1.09+0.62+0.86

−0.41−0.68 13.34+3.03+2.12
−2.85−1.48 3

44 200-500 800-1200 3+ 0.44+0.49+0.05
−0.25−0.05 1.66+0.76+0.26

−0.60−0.26 1.60+0.96+1.11
−0.96−0.65 0.60+0.30+0.39

−0.21−0.39 4.30+1.60+1.20
−1.30−0.80 4

45 200-500 1200+ 3+ 0.66+0.72+0.12
−0.52−0.12 0.65+0.61+0.10

−0.40−0.10 0.56+0.35+0.42
−0.35−0.21 0.04+0.19+0.12

−0.00−0.04 1.91+1.39+0.47
−0.99−0.27 1

46 500-750 500-800 3+ 0.00+0.52+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.03+0.04+0.02
−0.03−0.00 0.04+0.09+0.07

−0.03−0.01 0.07+0.98+0.07
−0.05−0.01 0

47 500-750 1200+ 3+ 0.00+0.47+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.06+0.05+0.04
−0.05−0.00 0.00+0.09+0.03

−0.00−0.00 0.06+0.94+0.05
−0.05−0.00 0

48 750+ 800+ 3+ 0.00+0.61+0.00
−0.00−0.00 0.01+0.46+0.01

−0.01−0.00 0.05+0.05+0.05
−0.05−0.00 0.00+0.08+0.03

−0.00−0.00 0.06+1.07+0.06
−0.05−0.00 0
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Table 5: Observed numbers of events and prefit background predictions for Njet ≥ 9. These
results are displayed in the rightmost section of Fig. 6. The first uncertainty is statistical and
the second systematic.

Bin Hmiss
T [GeV] HT [GeV] Nb-jet Lost-e/µ τ → had Z→ νν QCD Total Pred. Obs.

49 200-500 500-800 0 0.99+0.59+0.21
−0.45−0.21 0.61+0.52+0.09

−0.23−0.09 0.26+0.26+0.12
−0.26−0.00 0.92+0.54+0.80

−0.35−0.57 2.77+1.26+0.84
−0.81−0.62 2

50 200-500 800-1200 0 2.12+0.72+0.33
−0.62−0.33 3.92+1.17+0.41

−1.08−0.41 2.14+0.81+0.81
−0.81−0.64 0.78+0.31+0.56

−0.23−0.55 8.96+2.08+1.12
−1.90−0.99 12

51 200-500 1200+ 0 0.58+0.54+0.08
−0.35−0.08 1.05+0.76+0.16

−0.61−0.15 0.42+0.30+0.18
−0.30−0.12 3.93+0.67+2.45

−0.58−2.45 5.98+1.49+2.46
−1.15−2.46 8

52 500-750 500-800 0 0.00+0.34+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.15+0.15+0.11
−0.15−0.00 0.00+0.11+0.04

−0.00−0.00 0.15+0.82+0.11
−0.15−0.00 0

53 500-750 1200+ 0 0.14+0.36+0.05
−0.14−0.00 0.02+0.46+0.01

−0.02−0.00 0.00+0.76+0.00
−0.00−0.00 0.00+0.09+0.04

−0.00−0.00 0.17+1.13+0.04
−0.17−0.00 0

54 750+ 800+ 0 0.00+0.28+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.00+0.79+0.00
−0.00−0.00 0.00+0.08+0.03

−0.00−0.00 0.00+1.09+0.03
−0.00−0.00 0

55 200-500 500-800 1 1.36+0.66+0.20
−0.53−0.19 1.58+0.71+0.19

−0.54−0.19 0.19+0.19+0.10
−0.19−0.00 0.09+0.22+0.15

−0.07−0.02 3.22+1.40+0.32
−1.08−0.27 6

56 200-500 800-1200 1 3.19+0.99+0.53
−0.91−0.52 4.05+1.17+0.37

−1.08−0.36 1.57+0.64+0.70
−0.64−0.67 0.88+0.34+0.65

−0.25−0.63 9.68+2.28+1.15
−2.10−1.11 4

57 200-500 1200+ 1 1.70+0.85+0.25
−0.73−0.25 1.41+0.79+0.25

−0.65−0.25 0.31+0.22+0.15
−0.22−0.08 2.41+0.54+1.61

−0.45−1.61 5.83+1.74+1.65
−1.46−1.65 3

58 500-750 500-800 1 0.00+0.40+0.00
−0.00−0.00 0.05+0.46+0.02

−0.05−0.00 0.11+0.11+0.08
−0.11−0.00 0.00+0.11+0.04

−0.00−0.00 0.16+0.88+0.09
−0.12−0.00 0

59 500-750 1200+ 1 0.00+0.41+0.00
−0.00−0.00 0.15+0.48+0.04

−0.14−0.00 0.00+0.66+0.00
−0.00−0.00 0.00+0.09+0.03

−0.00−0.00 0.15+1.11+0.03
−0.14−0.00 1

60 750+ 800+ 1 0.00+0.33+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.00+0.68+0.00
−0.00−0.00 0.00+0.08+0.03

−0.00−0.00 0.00+1.05+0.03
−0.00−0.00 0

61 200-500 500-800 2 1.38+0.74+0.18
−0.62−0.17 1.51+0.77+0.15

−0.61−0.15 0.10+0.11+0.07
−0.10−0.00 0.00+0.22+0.11

−0.00−0.00 3.00+1.53+0.27
−1.23−0.23 3

62 200-500 800-1200 2 1.39+0.68+0.20
−0.57−0.20 2.20+0.92+0.20

−0.80−0.20 0.87+0.41+0.54
−0.41−0.46 0.26+0.22+0.24

−0.13−0.13 4.72+1.67+0.65
−1.43−0.55 1

63 200-500 1200+ 2 0.28+0.48+0.04
−0.20−0.04 1.40+0.83+0.19

−0.70−0.19 0.17+0.13+0.11
−0.13−0.04 1.38+0.45+0.95

−0.35−0.95 3.24+1.40+0.98
−0.97−0.97 2

64 500-750 500-800 2 0.00+0.36+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.06+0.06+0.05
−0.06−0.00 0.00+0.11+0.04

−0.00−0.00 0.06+0.83+0.07
−0.06−0.00 0

65 500-750 1200+ 2 0.00+0.45+0.00
−0.00−0.00 0.01+0.46+0.00

−0.01−0.00 0.00+0.52+0.00
−0.00−0.00 0.00+0.09+0.03

−0.00−0.00 0.01+1.05+0.03
−0.01−0.00 0

66 750+ 800+ 2 0.00+0.43+0.00
−0.00−0.00 0.00+0.46+0.00

−0.00−0.00 0.00+0.52+0.00
−0.00−0.00 0.00+0.08+0.03

−0.00−0.00 0.00+1.04+0.03
−0.00−0.00 0

67 200-500 500-800 3+ 0.30+0.48+0.05
−0.21−0.05 1.13+0.79+0.16

−0.64−0.16 0.02+0.03+0.03
−0.02−0.00 0.00+0.22+0.09

−0.00−0.00 1.46+1.29+0.20
−0.85−0.17 0

68 200-500 800-1200 3+ 1.92+1.38+0.33
−1.33−0.32 0.70+0.60+0.09
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INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy
M. Abbresciaa ,b, C. Calabriaa,b, C. Caputoa ,b, A. Colaleoa, D. Creanzaa ,c, L. Cristellaa,b, N. De
Filippisa ,c, M. De Palmaa,b, L. Fiorea, G. Iasellia ,c, G. Maggia,c, M. Maggia, G. Minielloa ,b,
S. Mya ,b, S. Nuzzoa,b, A. Pompilia ,b, G. Pugliesea,c, R. Radognaa ,b, A. Ranieria, G. Selvaggia ,b,
L. Silvestrisa,15, R. Vendittia,b

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
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30: Also at Università degli Studi di Siena, Siena, Italy
31: Also at Purdue University, West Lafayette, USA
32: Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia
33: Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia
34: Also at Consejo Nacional de Ciencia y Tecnologı́a, Mexico city, Mexico
35: Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
36: Also at Institute for Nuclear Research, Moscow, Russia
37: Now at National Research Nuclear University ’Moscow Engineering Physics
Institute’ (MEPhI), Moscow, Russia
38: Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia
39: Also at University of Florida, Gainesville, USA
40: Also at California Institute of Technology, Pasadena, USA
41: Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia
42: Also at INFN Sezione di Roma; Università di Roma, Roma, Italy
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